Natural Selection & Allele Frequencies

"Types" of Natural Selection If we were to measure and plot the distribution of any genetic based phenotype, the graph would be a typical bell shaped curve:

Phenotype range

"Types" of Natural Selection If we were to measure and plot the distribution of any genetic based phenotype, the graph would be a typical bell shaped curve:

1. Directional Selection:

#

- Selection against one phenotypic extreme

Phenotype range

1. Directional Selection:

#

- Selection against one phenotypic extreme

Phenotype range

1. Directional Selection:

#

- Selection against one phenotypic extreme

Phenotype range

- **1. Directional Selection:**
 - Selection against one phenotypic extreme Example: The speed of gazelles

2. Stabilizing Selection:

#

- Selection against both phenotypic extremes

Phenotype range

3. Stabilizing Selection:

#

- Selection against both phenotypic extremes

Phenotype range

3. Stabilizing Selection:

#

- Selection against both phenotypic extremes

Phenotype range

- **3. Stabilizing Selection:**
 - Selection against both phenotypic extremes

Example: Birth weight of human babies

- **3. Stabilizing Selection:**
 - Selection against both phenotypic extremes

Example: Birth weight of human babies

Heavier <u>17 lbs.</u>

- **3. Disruptive Selection:**
 - Selection for both phenotypic extremes

Phenotype range

2. Disruptive Selection:

#

- Selection for both phenotypic extremes

Phenotype range

2. Disruptive Selection:

#

- Selection for both phenotypic extremes

Phenotype range

- **2. Disruptive Selection:**
 - Selection for both phenotypic extremes Example: Mocker swallowtail butterflies color

#

- **2. Disruptive Selection:**
 - Selection for both phenotypic extremes Example: Mocker swallowtail butterflies color

Question to consider in your teams....

Which of these types of selection do you think may be most responsible for divergent evolution, leading to the development of new species over time?

Evo Review

Adaptations INCREASE fitness to survive and reproduce.

- 1. Camouflage Species blending in with their environment
- 2. Mimicry One species evolves to resemble another