The Living World Fourth Edition GEORGE B. JOHNSON

6 How Cells Acquire Energy

PowerPoint[®] Lectures prepared by Johnny El-Rady

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.1 An Overview of Photosynthesis

- Photosynthesis is the process that captures light energy and transforms into the chemical energy of carbohydrates
- It occurs in the
 - Plasma membranes of some bacteria
 - Cells of algae
 - Leaves of plants

Fig. 6.1 Journey into a leaf

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Fig. 6.1 Journey into a leaf

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Photosynthesis takes place in three stages:

- 1. Capturing energy from sunlight
- 2. Using energy to make ATP and NADPH
- 3. Using ATP and NADPH to power the synthesis of carbohydrates from CO₂

All three stages occur in the chloroplast

6.2 How Plants Capture Energy from Sunlight

- Light consists of tiny packets of energy called photons
- Sunlight contains photons of many energy levels
 - High energy photons have lower wavelength than low energy photons
- The full range of these photons is called the electromagnetic spectrum

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Pigments

- Are molecules that absorb light energy
- The pigment in human eyes is retinal
 - Absorption: ~ 380 (violet) 750 (red) nm
- The main pigment in plants is chlorophyll
 - Chlorophyll a and chlorophyll b
 - Have slight differences in absorption spectra
- Carotenoids are accessory pigments
 - They capture wavelengths not efficiently absorbed by chlorophyll

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Fig. 6.5 Fall colors are produced by pigments such as carotenoids

6.3 Organizing Pigments into Photosystems

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.3 Organizing Pigments into Photosystems

- The light-dependent reactions take place in five stages
 - 1. Capturing light
 - 2. Exciting an electron
 - 3. Electron transport
 - 4. Making ATP
 - 5. Making NADPH

Fig. 6.7 How a photosystem works

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Plants use two photosystems that occur in series
 Process is called noncyclic photophosphorylation

Fig. 6.8

6.4 How Photosystems Convert Light to Chemical Energy

- The antenna complex of photosystem II first captures the photons
 - It generates a high-energy electron that is passed through an electron transport system
 - This drives the synthesis of ATP
- The electron is then transferred to photosystem I
 - It gets an energy boost from another photon of light
 - It is passed through another electron transport system
 - This drives the synthesis of NADPH

Fig. 6.9 The photosynthetic electron transport system

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Fig. 6.10 Chemiosmosis in a chloroplast

6.5 Building New Molecules

Light-dependent reactions provide the raw material

- 1. ATP serves as the source of energy
 - Provided by photosystem II
- 2. NADPH provides the reducing power
 - Provided by photosystem I
- The Calvin Cycle (C₃ photosynthesis) is the pathway that assembles the new molecules
 - It takes place in the stroma of the chloroplast

Carbon dioxide is "fixed" into a three carbon molecule Hence, C₃ photosynthesis 3 3 CO₂ 6 **9** 3-phosphoglycerate 300000 6 000 300000 RuBP 3-phospho-RuBP (Starting glycerate (Starting material) material) NADPH Glyceraldehyde (\mathbf{P}) 5 000 6000 3-phosphate Glyceraldehyde 3-phosphate P Glyceraldehyde 3-phosphate 1000 It takes six turns of the Glucose cycle to make one molecule of glucose

Fig. 6.11 How the Calvin cycle works

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.5 Building New Molecules

- In hot weather, plants have trouble with C₃
 photosynthesis
- This leads to photorespiration
 - O₂ is now consumed and CO₂ is produced as a by-product
 - This decreases the photosynthetic yields

Fig. 6.13

6.5 Building New Molecules

- Some plants decrease photorespiration by performing C₄ photosynthesis
 - CO₂ is fixed initially into a four-carbon molecule
 - It is later broken down to regenerate CO₂

Fig. 6.14a

The C₄ pathway is used by two types of plants

C₄ plants

- Examples: Sugarcane, corn
- CO₂ fixation and the Calvin cycle are separated in space, occurring in two different cells

CAM plants

- Examples: Cacti, pineapples
- Initial CO₂ fixation is called crassulacean acid metabolism (CAM)
- CO₂ fixation and the Calvin cycle are separated in time, occurring in two different parts of the day

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.6 An Overview of Cellular Respiration

- Cellular respiration is the harvesting of energy from breakdown of organic molecules produced by plants
- The overall process may be summarized as

 $\begin{array}{cccc} C_6H_{12}O_6 + & 6&O_2 & \longrightarrow & 6&CO_2 + & 6&H_2O & + & energy\\ glucose & oxygen & carbon & water & (heat or ATP)\\ & dioxide & \end{array}$

Cellular respiration is carried out in two stages:

I. Glycolysis Occurs in the cytoplasm

2. Oxidation Occurs in the mitochondria

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.7 Using Coupled Reactions to Make ATP

- Glycolysis is the first stage in cellular respiration
 - Takes place in the cytoplasm
 - Occurs in the presence or absence of oxygen
 - Involves ten enzyme-catalyzed reactions
 These convert the 6-carbon glucose into two 3-carbon molecules of pyruvate

Fig. 6.17 How glycolysis works

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Fig. 6.18 Glycolysis

Anaerobic Respiration

 The use of *inorganic* terminal electron acceptors other than oxygen

Organism	TEA	Reduced Product
Methanogens Archaea	CO ₂	CH ₄ Methane
Sulfur bacteria	SO ₄ Sulfate	H ₂ S Hydrogen sulfide

Fermentation

- The use of *organic* terminal electron acceptors
- The electrons carried by NADH are donated to a derivative of pyruvate
 - This allows the regeneration of NAD⁺ that keeps glycolysis running
- Two types of fermentation are common among eukaryotes
 - Lactic fermentation
 - Ethanolic fermentation

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.8 Harvesting Electrons from Chemical Bonds

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

6.8 Harvesting Electrons from Chemical Bonds

Fig. 6.21 How NAD⁺ works

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The Krebs Cycle

- Takes place in the mitochondria
- It consists of nine enzyme-catalyzed reactions that can be divided into three stages
 - Stage 1
 - Acetyl coA binds a four-carbon molecule producing a six-carbon molecule
 - Stage 2
 - Two carbons are removed as CO₂
 - Stage 3
 - The four-carbon starting material is regenerated

Fig. 6.22 How the Krebs cycle works

Fig. 6.23 The Krebs cycle

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 Glucose is entirely consumed in the process of cellular respiration

- It is converted to six molecules of CO₂
- Its energy is preserved in
 - Four ATP molecules
 - Ten NADH electron carriers
 - Two FADH₂ electron carriers

6.9 Using the Electrons to Make ATP

- The NADH and FADH₂ carry their high-energy electrons to the inner mitochondrial membrane
- There they transfer them to a series of membraneassociated carriers – the electron transport chain
 - Three of these carriers are protein complexes that pump protons out of the matrix
- The electrons are finally donated to oxygen to form water

Fig. 6.24 The electron transport chain

- The proton pumps lead to an increase in proton concentration in the intermembrane space
- The proton gradient induces the protons to reenter the matrix through ATP synthase channels
- The proton reentry drives the synthesis of ATP by chemiosmosis

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Fig. 6.26 An overview of the electron transport chain and chemiosmosis

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Other Sources of Energy

 Food sources, other than sugars, can be used in cellular respiration

- These complex molecules are first digested into simpler subunits
 - These subunits are modified into intermediates
 - These intermediates enter cellular respiration at different steps

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display